Improved Nonlinear Model Predictive Control Based on Genetic Algorithm

نویسندگان

  • Wei CHEN
  • Tao ZHENG
  • Mei CHEN
  • Xin LI
چکیده

Model predictive control (MPC) has made a significant impact on control engineering. It has been applied in almost all of industrial fields such as petrochemical, biotechnical, electrical and mechanical processes. MPC is one of the most applicable control algorithms which refer to a class of control algorithms in which a dynamic process model is used to predict and optimize process performance. Linear model predictive control (LMPC) has been successfully used for years in numerous advanced industrial applications. It is mainly because they can handle multivariable control problems with inequality constraints both on process inputs and outputs. Because properties of many processes are nonlinear and linear models are often inadequate to describe highly nonlinear processes and moderately nonlinear processes which have large operating regimes, different nonlinear model predictive control (NMPC) approaches have been developed and attracted increasing attention over the past decade [1-5]. On the other hand, since the incorporation of nonlinear dynamic model into the MPC formulation, a non-convex nonlinear optimal control problem (NOCP) with the initial state must be solved at each sampling instant. At the result only the first element of the control policy is usually applied to the process. Then the NOCP is solved again with a new initial value coming from the process. Due the demand of an on-line solution of the NOCP, the computation time is a bottleneck of its application to large-scale complex processes and NMPC has been applied almost only to slow systems. For fast systems where the sampling time is considerably small, the existing NMPC algorithms cannot be used. Therefore, solving such a nonlinear optimization problem efficiently and fast has attracted strong research interest in recent years [6-11]. To solve NOCP, the control sequence will be parameterized, while the state sequence can be handled with two approaches: sequential or simultaneous approach. In the sequential approach, the state vector is handled implicitly with the control vector and initial value vector. Thus the degree of freedom of the NLP problem is only composed of the control parameters. The direct single shooting method is an example of the sequential method. In the simultaneous approach, state trajectories are treated as optimization variable. Equality constraints are added to the NLP and the degree of freedom of the NLP problem is composed of both the control and state parameters. The most well-known simultaneous method is based on collocation on finite elements and multiple shooting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

طراحی کنترل کننده پیش بین سیستم بویلر- توربین

A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...

متن کامل

A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme

A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012